La suma de tres números enteros consecutivos es igual al doble del número mayor. De acuerdo a la forma de codificar el enunciado verbal del problema anterior, se plantean las siguientes ecuaciones:
I) 3n - 3 = 2n
II) 3n = 2n + 2
III) 3n + 3 = 2n + 4
¿ Cuál(es) de la(s) ecuacion(es) anteriores permite(n) encontrar los números pedidos ?
A) Sólo I
B) Sólo II
C) Sólo III
D) Sólo II y III
E) I, II, III
Respuesta:
Expresemos los tres números como: (n-2) ; (n-1) ; (n)
Le ecuación se plantea entonces como:
(n-2) + (n-1) + n = 2n
3n - 3 = 2n
I) es VERDADERA
Expresemos los tres números como: (n-1) ; (n) ; (n+1)
La ecuación se plantea entonces como:
(n-1) + (n) + (n+1) = 2(n+1)
3n = 2n + 2
II) es VERDADERA
Expresemos los tres números como: (n) ; (n+1) , (n+2)
La ecuación se plantea entonces como:
(n) + (n+1) + (n+2) = 2(n+2)
3n + 3 = 2n + 4
III) es VERDADERA
I, II, III son verdaderas, Alternativa E)
Fuente: Ensayo Matemáticas U.Católica - Miguel Ormazábal D-M.
NEM: Primero Medio.
Eje Temático: II. Álgebra y Funciones.
CMO: Planteo de Ecuaciones
sábado, 19 de noviembre de 2011
Desafío - Planteo de Ecuaciones
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario