miércoles, 15 de junio de 2016

Desafío - Problema de Planteo - Sistema de Ecuaciones - 1ro. Medio - Resuelto

Una fundación de beneficencia realizó una colecta en una escuela y juntó $ 235.000. Cada uno de los 1.050 niñ@s de la escuela se pudieron con una moneda de $ 100 o $ 500. ¿Cuántos niñ@s aportaron monedas de $ 100?

A) 725
B) 325
C) 1050
D) (725 , 325)
E) (325 , 725)

Fuente: SM 1ro. Medio - Modificado.
NEM: Primero Medio
Eje Temático: II.) Álgebra.
CMO: Sistemas de Ecuaciones 2x2

Respuesta:

Llamemos:
C : a la cantidad de niñ@s que dieron monedas de $ 100
Q : a la cantidad de niñ@s que dieron monedas de $ 500

El sistema que se plantea es:

Ecuación de la cantidad de niñ@s: C + Q = 1.050
Ecuación del dinero: 100C + 500Q = 235.000

C      +       Q = 1.050
100c + 500Q = 235.000

Como debo conseguir C, voy a reducir "Q". Multiplico por -500.

-500C      -  500Q = - 525.000
100 C      + 500 Q =   235.000

Sumando ambas ecuaciones:

-400C                    = -290.000

Despejamos C:

C = (-290.000) / (-400) = 725

Respuesta: 725 niñ@s dieron 100 pesos cada uno.

Alternativa A)



No hay comentarios:

Publicar un comentario